
J.  Fluid Me&. (1994), vol. 260, pp. 299-314 
Copyright 0 1994 Cambridge University Press 

299 

On the motion of a rigid cylinder in a rotating 
electrically conducting fluid 

By DAVID E. LOPER 
Department of Mathematics and Geophysical Fluid Dynamics Institute, Florida State University, 

Tallahassee, FL 32306-3017, USA 

(Received 23 February 1993 and in revised form 31 August 1993) 

The flow structures generated and drag experienced by a rigid cylinder moving in an 
arbitrary direction through a rotating electrically conducting fluid in the presence of an 
applied magnetic field are investigated, with the aim of understanding better the nature 
of the small-scale flow in the core of the Earth which may be responsible for 
maintaining the geomagnetic field through dynamo action. Three cases are considered 
in the limit of small Rossby and magnetic Reynolds numbers. In the case of very weak 
rotation, the possible flow structures consist of a thin Hartmann layer and a long wake 
extending in the direction of the magnetic field, in which Lorentz and viscous forces 
balance, but only the long wake plays a dynamical role. The dominant drag force is 
experienced for motion that cuts magnetic lines of force. Motion of the cylinder 
parallel to its axis induces a much weaker drag, while that in the direction of the 
magnetic field induces none to dominant order. The cylinder also experiences weak 
lateral forces due to the Coriolis effect. In the case of weak rotation, the balance in the 
long wake is now magnetostrophic: between Lorentz and Coriolis forces. The drag is 
qualitatively identical to that in the first case, but the drag induced by motion parallel 
to the axis of the cylinder is increased, though still smaller than that for motions cutting 
magnetic lines of force. In the case of strong rotation, the flow structures consist of a 
thin Ekman layer and a foreshortened Taylor column extending in the direction of the 
rotation axis. In this column, the force balance is again magnetostrophic. Again only 
the large-scale structure plays a dynamical role. Motion of the cylinder perpendicular 
to its axis induces a larger drag than does motion parallel to its axis. The cylinder also 
experiences large lateral Coriolis forces. 

1. Introduction 
This paper is motivated by a desire to understand better the small-scale flow within 

the Earth's core which may be responsible for driving the dynamo which sustains the 
Earth's magnetic field. The most likely power source for the geodynamo is 
compositional convection driven by the excess of light material released by the gradual 
solidification of the inner core as the Earth cools over geologic time (Braginsky 1963; 
Lowes 1984). Laboratory experiments (Tait & Jaupart 1989, 1992; Chen & Chen 1991) 
suggest that this material is released in the form of compositionally buoyant plumes 
and blobs which rise through the outer core. 

These rising buoyant parcels are acted on by three non-coplanar forces, due to 
gravity, rotation and the ambient magnetic field. The direction and rate of rise of 
parcels under such circumstances is unknown. The problem of determining rise velocity 
is very difficult for a fluid parcel, since the parcel will in general be deformed by the 
flow, yielding a free-boundary problem. As a preliminary to solving this problem, we 
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shall consider the simpler, but still challenging, problem of determining the drag on a 
rigid body of known shape. This restriction is not as severe as one would expect, since 
the rate of distortion of a buoyant parcel is much slower than the adjustment of the 
flow in response to a given buoyancy distribution. Therefore, studies of the rise of rigid 
parcels is expected to give results that are similar to the more difficult problem of the 
rise of buoyant fluid parcels. 

In the present paper we shall consider the motion of a rigid circular cylinder; a rigid 
sphere will be considered in a later paper. The motivation for considering cylindrical 
shapes is provided by a simple illustrative experiment involving the cooling of 
ammonium chloride in which buoyant material rises from the bottom boundary in the 
form of cylinders (see Eltayeb & Loper 1991, figure 1). It may be argued that 
turbulence within the core would destroy these cylindrical shapes, but the scaling 
argument presented in Moffatt & Loper (1993, $6) suggests that they might indeed 
retain their identity and geometry. Therefore the results of the present analysis might 
have direct application to buoyancy-driven flow within the core. 

The cylinder is assumed to be in steady translational motion in an arbitrary direction 
through a homogeneous rotating fluid of infinite extent in the presence of a uniform 
magnetic field. The orientations of the rotation and magnetic-field vectors are 
arbitrary. We shall assume that the velocity of the cylinder is known and calculate the 
drag acting on it. 

Calculation of the flow field produced by, and drag experienced by, a translating 
cylinder in a non-rotating, non-conducting fluid is classic problem of fluid dynamics. 
For transverse motion (i.e. perpendicular to the cylinder axis) the Oseen approximation 
permits a uniformly valid solution, while no steady solution exists for the case of 
motion parallel to the axis. This singular behaviour is removed by the presence of the 
rotation and magnetic field. The rotational and hydromagnetic effects make the fluid 
medium anisotropic, and the effect of the cylinder is channelled into narrow structures, 
rather than affecting all the surrounding fluid. A natural consequence of this 
anisotropy is that the drag force is a general linear function of the prescribed velocity. 
In the following sections we shall determine the tensor of drag coefficients (referred to 
as the drag tensor) which relates these two vectors. 

The effects of rotational and hydromagnetic forces are measured by two 
dimensionless parameters (see (2.6)) measuring the relative strengths of Coriolis, 
Lorentz and viscous forces. These forces combine to give the well-known Ekman- 
Hartmann boundary layers, plus less familiar large-scale structures. In the case in 
which Lorentz forces dominate Coriolis ones in the boundary-layer structure, the 
large-scale structure is elongated in the direction of the magnetic field, while in the 
opposite case, it is elongated in the direction of the rotation vector. The effect of these 
elongations is to weaken the dominant force, making a balance with the weaker force 
possible. Each of these elongated structures can be thought of as a magnetostropic 
balance. In the extreme case of very weak rotation the large-scale balance is between 
Lorentz and viscous forces, while in the case of very strong rotation, it is between 
Coriolis and viscous forces. This latter case yields the familiar Taylor column. These 
balances are summarized in table 1. We shall assume that the Hartmann number is 
large, so that the case of very strong rotation is not considered in the present paper. 
The strength of the magnetic field within the Earth’s core is very poorly known, as the 
toroidai part is unobserved. However, it is generally believed that the toroidal field is 
sufficiently large that the case of weak rotation pertains to the core. 

There have been very few studies of cylinders in hydromagnetic flow. A flow 
configuration in which there would be no distortion of the cylinder if it were fluid has 
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FIGURE 1. Dimensional rise speeds for the three flow regimes within the parameter box Q,, 
D, < aB2/p. Those for regimes H and Y are calculated, while that for regime X is conjectured. 
The rise speeds agree at the common boundaries. 

02,- 

Short-scale Large-scale Direction of elongation 

Very-weak rotation ( N  + 1 / M ,  1 < M ,  1 < E )  

Weak rotation (1/M < N < 1, 1 + M ,  E < 1) 

Strong rotation (1 < N ,  1 < M ,  E < 1) 

Very strong rotation (1  + N ,  M < 1, E 4 1 )  

L = V  L = V  Along B 

L = V  L = C  Along B 

C =  v L = C  Along D 

c= v c= v Along Q 

TABLE 1. Force balances: L = Lorentz, C = Coriolis, V = Viscous. The parameters M and 
N = N ,  are from (2.6), while E = (MN)-2  is the Ekman number 

been recently studied by Loper & Moffatt (1993). This consists of a vertical cylinder of 
buoyant fluid rising parallel to its axis through a fluid rotating about that same axis and 
permeated by a large-scale transverse magnetic field. Such a flow configuration might 
exist in the polar regions of the core. This configuration is singular in that the Coriolis 
force plays no role since all motion is parallel to the axis of rotation. They found that 
the rate of rise of the buoyant cylinder of fluid is exceptionally rapid in this case, being 
of the order of (Ap)ga/B@m)+,  where Ap is the density deficit of the buoyant cylinder 
and a is a measure of the lateral extent of the cylinder (in the direction of the applied 
magnetic field of strength B); the remaining notation is standard. This rate of rise is 
larger than that expected by simple scaling arguments by a factor A4 = aB(o/pv)i. 

The analysis of Loper & Moffatt has been generalized by Ruan & Loper (1993). In 
their study the cylinder was again assumed to move parallel to its axis but the 
orientations of the rotation and magnetic-field vectors were allowed to be arbitrary. In 
this circumstance, the cylinder must be assumed rigid, since distortion by the flow 
would otherwise result. It was found that the rise law of Loper & Moffatt is valid 
provided the rate of rotation in the direction perpendicular to the applied magnetic 
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FIGURE 2.  Geometric orientation of the cylinder, rotation axis, applied magnetic field, prescribed 
velocity vector and the Cartesian frame of reference. 

field (52,) is less than v/a2 and the rate of rotation in the direction of the applied 
magnetic field (Q,) is less than ( C T V ) ~  B / p h  If the first of these conditions is not satisfied, 
the rate of rise of the cylinder parallel to its axis is of the order of (Ap)g/B(paSZ,)~ .  This 
rise law is valid provided SZ, < v B 2 / p  and SZy < pSZ:/(rB2. If the second condition is 
not satisfied, the rate of rise has been conjectured to be of the order of (Ap)g/pSZ,. Note 
that each of these rise laws is independent of the size of the cylinder, and each is much 
larger than that expected from simple scaling arguments. These rise laws are 
summarized in figure 1, taken from Ruan & Loper. Note that if SZ,,., SZ, and B tend to 
zero such that figure 1 remains valid, the rise speeds all tend to infinity, as expected, 
since the corresponding non-rotating, non-magnetic problem has no solution. 

These previous results hold for a cylinder of buoyant material moving parallel to its 
axis, and it has been found that the rise speed is anomalously large, in the strong 
magnetic-field limit, for any orientation of rotation and magnetic field. We now wish 
to consider the transverse motion of a cylinder, and determine whether this anomaly 
persists. The major goal of the present study is to determine the drag on the cylinder 
and to investigate the structure and dynamics of the associated flow structures. 

The problem is formulated in $2, and the possible flow structures that may occur are 
discussed in 53. Also, an expression for the drag force is developed. The three cases of 
very weak rotation, weak rotation and strong rotation are considered in $$4, 5 ,  and 6. 
Finally the results are summarized in $7. 

2. Formulation 
We consider the steady translational motion of a rigid circular cylinder of radius a 

through a homogeneous rotating fluid of infinite extent in the presence of a uniform 
magnetic field. The applied magnetic field is assumed to have an arbitrary orientation. 
The relative orientations of the cylinder, the associated velocity, rotation and 
magnetic-field vectors and the coordinate system are depicted in figure 2. 

The flow is assumed to be steady when viewed from a coordinate frame moving with 
the cylinder. In this frame the governing equations are given by the set (2.1) of Ruan 
& Loper (1993). If we let the z-axis of a Cartesian coordinate system coincide with the 
axis of the cylinder, and the x-axis lie in the plane defined by that axis and the direction 
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of the applied magnetic field, we may write the velocity u, magnetic field B and pressure 
P as 

p = p , + / ) r . g + ~ ~ p x x r , . 5 2 x r , + I U I a a B 2 p * ,  and W = W * / a . /  

The case in which U is solely in the z-direction has been considered by Ruan & Loper 
(1993), and that analysis will provide some guidance in what follows. $* is the fluid 
stream function and q5* is the magnetic-field stream function for the plane 
perpendicular to the axis of the cylinder. Note that, since the electric current may be 
expressed as j = p-lV x b, the function c* serves as a stream function for the electric 
current flowing in the (x, y)-plane and the function - V*'$* equals the electric current 
flowing in the z-direction. With the chosen geometry, we have that a/az = 0. 

Dropping the asterisks, the dimensionless governing equations for 1 < x 2 + y 2  are 

aW 

ax 
0 = -+v2c, (2.3) 

0 = -+vz$h; a$ 
ax 

where M = aB(g/pv);, N i  = 2p(SZ.i)/c~B~ (2.6) 

and ui = ( U -  a// UI for i = x, y and z ,  and 

R, = (U-2)/2a(S1-9), and R, = (U- i )upa .  

The Hartmann number, M ,  measures the relative strength of the Lorentz and viscous 
forces, while the magnetic interaction parameters, Ni, measure the relative strengths of 
the Coriolis and Lorentz forces. (Note that N p 2  = E M 2  where Eis  the Ekman number; 
also N 2  is an inverse Elsasser number.) R, is the Rossby number and R, is the magnetic 
Reynolds number. 

We shall assume that 1 6 M ,  so that the Lorentz forces are typically much stronger 
than viscous forces. This assumption rules out the case of very strong rotation, listed 
in table 1. Also, we shall assume that R,, and R, are sufficiently small that the nonlinear 
inertia terms and nonlinear Lorentz terms appearing in (2.3) and (2.5) are negligibly 
small. Following the line of argument presented in Ruan & Loper (1993) it may be 
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verified a posteriori that the linearization is valid provided that R,N:M3 < 1 and 
R ,  N i  M + 1 in the case of very weak rotation (having Ny A4 < 1 + M ) ,  R, Ny < 1 and 
R, Ny + 1 in the case of weak rotation (having 1/M < Nu < 1 4 M )  or in the case 
of strong rotation (having 1 + Ny and 1 Q M ) .  These conditions are weaker than the 
usual conditions that R,, and R, be smaller than unity in the case of very weak or weak 
rotation, but are more severe in the case of strong rotation. Using the parameter 
estimates of Moffatt & Loper (1993) it may be verified that these conditions are easily 
satisfied within the core, except that the condition on the magnetic Reynolds number 
is not strictly satisfied for a large cylinder (a > 10 km) if Ny >, 1. However, as noted 
in Moffatt & Loper, the low-R, approximation generally gives a good qualitative 
description even when R, is moderately large. 

The above equations hold within the fluid exterior to the cylinder. Within the 
cylinder the velocity is zero as measured from our moving coordinate system and the 
magnetic diffusion equation for x 2 + y 2  < 1 is simply 

(2.71, (2.8) v y  - uy = v2c = 0. 

The factor -uy in the equation governing I$ for x 2 + y 2  < 1 represents the applied 
electric field. 

These equations are to be solved subject to the following conditions. 

As.x'+y'+m: $ + O ,  w+O, etc. (2.9) 

1 ~ .  = u, sin (8) - uy cos (O),  a$/ar = u, sin (8) - uy cos (O), 1. 
(2.10) 

w = u,, and c, 4, y&/& and (?$/ar  are continuous, J 

AtX2+y2 = 1: 

where u: + ui  + u: = 1 and 

Here r and 8 are the usual cylindrical coordinates: x = rcos(8), y = rsin(O), and 
cr and crc represent the electrical conductivity of the fluid and the rigid cylinder. 

The (dimensional) drag force (per unit length) is given by an integral over the surface 
of the cylinder at r = u of the stress plus an integral over the interior of the cylinder of 
electromagnetic body force : 

Following and generalizing the development in Ruan & Loper (1993), the drag may be 
expressed in component form as 

The drag vector is a linear function of the velocity vector; the coefficients of 
this relationship form a tensor. In 944-6, we shall find the drag tensor for three 
parameter ranges. We shall find the drag tensor to be non-symmetric and with 
components being typically of differing orders of magnitude. 
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3. Flow structures 

may be expressed in dimensionless form as 
The system under investigation has a single scalar operator which in the present case 

with V2 = a2/ax2+a2/dy'.  This is an eighth-order operator; we anticipate it will yield 
four decaying modes in a given direction. Note that the components of rotation and 
magnetic field parallel to the axis of the cylinder play no role in determining the flow 
structures. There are three regimes of flow as described in the following paragraphs. 

For very weak rotation (Nu  4 1/M and N ,  4 1/Mi) we have the usual Hartmann 
layer, plus a very long Braginsky-Hasimoto (BH) structure extending in the direction 
of the applied magnetic field in which Lorentz and viscous forces are important. The 
BH balance has been studied by Braginsky (1960), Hasimoto (1960) and Loper & 
Moffatt (1993). In the BH balance, a weak axial viscous force, produced by velocity 
gradients in the lateral direction (i.e. perpendicular to the plane of the cylinder and 
magnetic field), balances an axial Lorentz force which is weakened by the elongation 
of structure in the direction of the field. The Hartmann layer and the BH structure each 
yield two modes. This parameter regime is studied in $4. 

For weak rotation (1/M 6 Nu 4 1 and N z  < Nu) the Hartmann structure is 
unchanged, but the BH structure is replaced by the shorter Ruan structure (Ruan 1993; 
Loper & Ruan 1993). In this new structure Lorentz and Coriolis forces balance. Since 
the Coriolis force is stronger than the viscous force, the Lorentz force need not be 
weakened so dramatically as in the previous case. Consequently the Ruan structure 
extends a shorter distance 1/N, in the direction of the applied magnetic field. This is 
a magnetostrophic balance. Again the Ruan structure and the Hartmann layer each 
yield two modes. This parameter regime is studied in 55.  

For strong rotation (1 < N y ) ,  the large-scale structure extends in the direction of the 
rotation vector, rather than the magnetic field. In this case, it is convenient to introduce 
new coordinates having their axes aligned with rotation rather than the magnetic field. 
Let 

and (3.3) 

where N z  = N2 sin (y)  and N ;  = N 2  cos ( y )  and y is the angle between the projection 
of the rotation vector in the (x,y)-plane and the y-axis (see figure 3). The scalar 
operator (3.1) oecomes 

aq a Y  I") a { i i z  2 [I: ( ag -V + cos(y)-+sin(y)- -m4 , (3.4) 

where now V2 = a 2 / / a ~ ' + + a " / 2 ~ 2  and E = (MN)-2  is the Ekman number. 
In the parameter range 1 << N ,  operator (3.4) yields the familiar Ekman layer to 

dominant order, plus an elongated structure, of extent N2/cos2(y) in the q-direction, 
i.e. in the direction of the rotation vector. In this structure, the Coriolis force is 
sufficiently weakened by the elongation that it balances the Lorentz force. This new 
structure is similar to a Taylor column, except that the Lorentz force, rather than the 
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FIGURE 3. The relative orientation of the x, y ,  z and 6, v, z coordinate systems. 

Large-scale 
Size of N ,  Ekman-Hartmann 

0 < N ,  < 1/M 
1/M < N ,  < 1 
1 < N ,  ?/ax = a/ay = E-3 3 / 2 6  = 1 2/87 = l / N t  

TABLE 2. Scales of flow structures 

?/ax = ?/c?y = M 
2la.x = c?/c'y = M I  

a/Bx = 1/M 
L7/c?x = N ,  

a/ay = 1 
2lay = 1 

viscous force, balances the Coriolis one; this is a magnetostrophic balance. Since the 
Lorentz force is stronger than the viscous force, the Taylor-like column is now 
foreshortened compared with the classical form. If the angle between the rotation 
vector and the y-axis is so close to that M 4 tan (7) (i.e. if MiN,  4 Nz),  the Lorentz 
force becomes weaker than the lateral viscous force and now the balance is between 
Coriolis and viscous forces; this is the usual Taylor column. The fourth mode comes 
from a Laplacian. The parameter regime 1 4 N and tan(y) Q M is studied in 96. 

The scales of structures resulting from the single scalar operator are summarized in 
table 2, on the assumption that the Coriolis force perpendicular to the magnetic field 
is dominant and that parallel to the magnetic field is negligible. 

4. Solution for very weak rotation: N ,  4 l / M  and N ,  < l / M +  
In this parameter range Coriolis forces are unimportant to dominant order and the 

primary balances are between Lorentz and viscous forces. These forces balance on two 
disparate lengthscales. There is a short-range Hartmann balance having a/& = O(Mj 
and a long-range BH balance (Braginsky 1960; Hasimoto 1960) having a/ax = 
0 ( 1 / M ) .  Each of these balances produces two modes. In deriving the solutions, it is 
useful to note the following symmetries. The part of $ driven by u, is even in x and 
odd in y ;  the part of II. driven by uy is odd in x and even in y ;  w is even in both x and 
y ;  c is odd in x and even in y .  Note also that on the cylinder cos (8) is odd in x and even 
in y ,  while sin(@ is even in x an odd in y .  
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The governing equations are (2.2)-(2.4) with the terms proportional to R,, R, and 
IV; being omitted and Laplacians reduced to a2/dy2. These are to be solved subject to 
conditions (2.9) and (2.10). With Coriolis effects ignored, the modes are uncoupled 
in both the Hartmann and BH structures, with one mode for @ and another for w 
and c. 

The BH modes may be found by contracting the x-axis by a factor M .  This collapses 
the cylinder into a thin ribbon of effectively zero extent on the (y,z)-plane. The 
governing equations then may be solved by Fourier transform in y .  The solutions 
which obey the symmetry conditions are 

and 

wBH = U ,  lorn w(k) cos (ky)  exp ( -k21xl/M) dk, 

cBH = '' 1; m(k) cos (ky)  exp ( -k21xl/M) dk, (4.3) 

where $,(k), $,(k) and w(k) are functions to be determined by satisfaction of the 
boundary conditions. 

At x 2 + y 2  = 1, the combined solutions must satisfy conditions (2.10). Scaling 
arguments (not presented) show that the conditions on y? and w are satisfied by the BH 
modes to dominant order, which require that 

1; $,(k) sin (ky) dk = sin (0) = y, (4.4) 

sgn (x) $,(k) cos (ky)  dk = - cos (8) = - sgn (x) (1 -y2)4, (4.5) 
0 

and 1: w(k) cos (ky)  dk = 1. 

These conditions are valid only for Iy( c 1. For 1 < Iyl, symmetry requires that 

lom $,(k) cos (ky)  dk = 0. (4.7) 

The symmetry conditions on $,(k) and w(k) are automatically satisfied. 
Equations (4.5) and (4.7) form a set of dual integral equations for $Jk). It may be 

verified by use of Gradshteyn & Ryzhik (1980, eqns. 6.671.2 (p. 730), 6.693.1 and 
6.693.2 (p. 743)) that the solutions of (4.4)-(4.7) are 

$,@I = J,(k) /k ,  $,(k) = - J , ( k ) / k  w(k) = J,(k),  (4.8) 
where J ,  is a Bessel function of order 1. 

The Hartmann modes are weakly driven since the non-homogeneous boundary 
conditions on $ and w given by (2.10) are entirely satisfied by the BH mode; only the 
condition on a$/& is not satisfied. Consequently the Hartmann mode for w and c has 
zero amplitude to dominant order, while that for the stream function has an amplitude 
of order 1/M: 

(4.9) 
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This solution is valid provided q 4 1/M, i.e. provided the cylinder is not nearly a 
perfect insulator. Note that the Hartmann balance breaks down near 8 = k i7c and the 
Coriolis terms need to be reinstated at that latitude for a full description of this mode. 
This singularity does not affect the large-scale structure or the drag, so it need not 
concern us further. This Hartmann solution is anomalous in that it is independent of 
both u, and u,; that is, motion in the direction of the cylinder axis or the applied 
magnetic field does not excite the Hartmann mode to dominant order. We shall see that 
this leads to difficulties in determining some components of drag. 

Combining (2.11) and (4.9), we have that to dominant order 

Note that D is highly variable; the y-component is of order unity, but the others are 
much smaller. 

It is anomalous that a drag term in the x-direction which is proportional to u, does 
not occur in (4.10). This implies that motion of the cylinder in the direction of the 
applied magnetic field is a dissipationless process. However, such a motion must induce 
both electric currents and fluid motions, each of which dissipate energy. The desired 
drag term can arise only through the integral involving viscous terms in (2.11). This 
integral should produce the desired drag term if the part of $ which is proportional to 
u, has the same symmetry as sin(@, i.e., even in x and odd in y .  This symmetry is 
expected of $, but unexpectedly, $H, given by (4.9), is independent of u,, so that no 
contribution arises from the Hartmann mode. Also, no contributions to (4.10) can 
come from the BH mode; it behaves linearly in the coordinates in the vicinity of 
r = 1, so that the second and third radial derivatives of $C/BH are identically zero. 

It is apparent that the desired drag term cannot arise from (2.1 1) or from the more 
precise version which does not make the usual boundary-layer approximation. This 
drag must come from the terms of order R, or R ,  which were neglected in the 
governing equations at the outset. The derivation of this drag term is beyond the scope 
of the present paper. 

Even though we are in the limit of high magnetic-field strength, only motion across 
the lines of force is subject to the hydromagnetic drag. Motions parallel to the field or 
parallel to the axis of the cylinder are subject to a much weaker drag. 

5. Solution for weak rotation: 1/M 4 N ,  < 1 and NE 4 N ,  
As in the previous case, the short-range balance yields a Hartmann layer; the Coriolis 

force does not affect this structure. However, this force does play an important role in 
the long-range Ruan structure, taking the place of the viscous force in balancing the 
Lorentz force. The equations governing the Ruan modes, abstracted from (2.2)-(2.4) 
by neglecting the viscous terms and the x-derivatives in the Coriolis terms and 

Note that, unlike the case of very weak rotation, the Ruan modes involve the 
interaction of $ with w and c. 

The forcing for the flow is in the conditions on yk, a $ p  and w in (2.10). In the case 
Nu < 1/M considered in 54, the forcing on yk and w is accommodated by the BH mode, 
with the magnitudes of yk and w in the Hartmann modes being smaller order. This 
ordering prevails as N ,  + 1/M. Consequently, we anticipate that in the present case, 



Motion of a cylinder in a rotating conductingfluid 309 

the forcing on $ and w is accommodated by the Ruan mode, with the magnitudes of 
I+ and w in the Hartmann modes again being of smaller order. This observation allows 
us to take advantage of symmetry in constructing the solutions for the Ruan modes. 
Specifically, the solutions driven by u, or u, have $ even in x and odd in y ,  c odd in 
x and even in y ,  and w even in both variables. The solutions driven by uv have ~ odd 
in x and even in y ,  c even in x and odd in y ,  and w odd in both variables. 

As in the previous section, the long-range Ruan modes may be solved by Fourier 
transform in y .  The solutions which possess the required symmetries and decay as 
1x1 --f a, may be expressed as 

co w(k) 
@R = - sgn (x) u, sin (ky) sin (i) exp (- 121) dk 

+ 1: [u, $,(k) sin (ky) + sgn (x) uy $,(k) cos (ky)] cos (2) exp (- 121) dk, (5.2) 

wR = U, J: W(k) cos (ky)  cos (2) exp (- Iil) dk 

- 1; [uy $,(k) sin (ky)  - sgn (x) u, $,(k) cos (ky)] sin (i) exp (- lil) k dk, (5.3) 

C R  = -- >: 1; F c o s  (ky) [sin (2) + sgn (x) cos (a)] exp (- 121) dk 

x [cos (2) - sgn (x) sin ( 4 1  exp (- 121) dk, (5.4) 
where i = Nu kx/.\/2. 

The non-homogeneous conditions on y? and w at x2+y2 = 1 are satisfied provided 
$,(I?), $,(k) and W(k) obey (4.4)-(4.6). As in $4, symmetry again requires that (4.7) be 
satisfied. The solutions for $,(k), $,(k) and w(k) are again given by (4.8). The 
dominant Hartmann modes are again given by (4.9). 

Combining (2.1 1) and the solutions described above, we have 

7CN 
= x ( N ;  U ,  - N :  uY) f + n(N,2 U, - uY - N z  U ~ ) Y - - ~ ( U ,  + u,) 2. (5.5) 

D 
aB21 UI a2 4 2  

Note the similarity to (4.10). As in $4, the drag in the x-direction driven by the flow 
in that direction is small, and is expected to come from the terms of order R, or R ,  
in the governing equations. 

6. Solution for strong rotation: 1 + N 
In this parameter range the long-range structure is elongated in the direction of the 

rotation vector, rather than in the direction of the applied magnetic field. Consequently 
the drag is best expressed in the ( & r ,  2)-coordinate system (see figure 3). In this system 
the drag force expressed by (2.11) may be written as 
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where ci, = cos (w)  4- sin (w) 5,  ug = cos (y) u, - sin (y) uy, up = sin (y)  u, + cos (y )  uyr 
and w is the polar angle measured from the (-axis; 8 = w -  y (see figure 3). 

It appears that the dominant contribution to the drag force comes from the terms 
proportional to N 2  and N,2 in (6.1). However, these are 'lift' terms in which the 
resulting force is in a direction normal to the applied velocity. Further, most of the 
viscous terms in (6.1) are also of order N 2 ,  and shall be retained. All terms of unit order 
are in fact small and may be neglected; in particular, the Lorentz drag is small. Keeping 
only the dominant terms, (6.1) may be simplified to 

To calculate the drag from (6.2) we need only the Ekman-layer solutions. However, 
they depend on the structure of the large-scale mode, which needs to be calculated first. 
In the large-scale structure the primary balance is still between Coriolis and Lorentz 
forces. The equations governing the new structure may be abstracted from (2.2)-(2.4), 
rewritten using (3.2) and (3.3), by ignoring viscous terms and neglecting q-derivatives 
compared with [-derivatives. They are 

These equations yield one mode; they are capable of satisfying only one boundary 
condition, on either 9 or w. The Ekman-layer structure has two modes and will satisfy 
the remaining two velocity conditions. The fourth exterior mode is governed by the 
Laplacian of c. It can be shown by scaling arguments that the new mode must satisfy 
the non-homogeneous boundary condition on $, while the Ekman modes satisfy those 
on a$/ar and w. The condition on $ from (2.10) may be expressed as 

$ = ug sin (w) - up cos ( w )  = u5 sgn (v)  (1 - - uq [. (6.4) 

As in the previous sections, this non-homogeneous condition on p dictates the 
pattern of symmetry in the solution. The solution driven by ul has $ even in ( and odd 
in 7, c odd in ( and even in 7, and w even in both variables, while that driven by uB has 
$ odd in < and even in 7, c even in ( and odd in 7, and w odd in both variables. 

The large-scale structure may be treated in a manner similar to that of the BH 
and Ruan structures in the previous sections. Contraction of the 7-axis by a factor 
N2/cosZ(y) collapses the cylinder to the (-axis and the equation for $ becomes the 
Laplacian, which can be solved by Fourier transform in [. The solution of (6.3) may 
be expressed as 

wN = [om [ - u5 $,(k) cos (k()  - u7 sgn (7) $,(k) sin ( k g ]  kexp (- klhl) dk (6.6) 

and 
m 

cN = cos (7) 1 [ k u 7  sgn (9) $ T ( ~ )  cos (k8 + u$&k) sin (k'91 exp ( - k l h l )  dk, (6.7) 
0 

where 7 = hNZ/cos2(y). The subscript N denotes this new mode. 
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This mode satisfies the boundary condition (6.4) on $ in the interval 161 c 1, i.e. 

31 1 

and 

1; $&k) cos (kQ dk = (1 - F); 

1: $,(k) sin (k t )  dk = - 5 

plus the symmetry condition for 1 < l(1: 

Jam $,(k) cos (klJ dk = 0. 

$@) = J,(k)/k and $,(k) = -J,(k)/k. 

As in $ 5 ,  we have that 

(6.10) 

(6.11) 

The short-range balance reduces to an Ekman balance to dominant order; the 
Lorentz force does not affect this structure. The equations governing the Ekman 
modes, abstracted from (2.2) and (2.4) are 

a3$ (6.12) and M 2 N 2  sin ( w )  w = -. 

The Ekman modes are driven by the conditions on a$/& and w, from (2.10), with 
contributions from solution (6.10) and (6. I 1). The solutions of equations (6.18)-(6.19) 
are 

wE = exp(-~[w,(w)cos(r')+w,(w)sin(r')], (6.13) 

aw 
ar ar3 

- M 2 N 2  sin (w)  $ = - 

where w, = ug-u,cot(w)+u2, w, = u5/lsin(w)l (6.15) 

and F =  (Isin(w)l/2E)t(r- 1). 
With these solutions, we may evaluate the integrals appearing in (6.2) and write 

N 
= -n(N2uE+N; y)  g+.(N: u,-N'u,) i)+-(4.0275~,- 3.3889~~) 2. D 

cB21 UI a2 M 
(6.16) 

The drag is highly anisotropic with the largest diagonal term, of order N 2 ,  being that 
in the &direction, i.e. the direction perpendicular to the plane of the cylinder axis and 
the rotation axis. There is an associated lift of order N 2  in the 7-direction, i.e. 
perpendicular to the axis of the cylinder, in the plane of the rotation axis. The diagonal 
term in the 7-direction is of unit order, while that in the z-direction, i.e. along the axis 
of the cylinder is smallest. 

7. Summary and discussion 
The flow structures generated by the prescribed motion of a rigid cylinder through 

a rotating electrically conducting fluid in the presence of an applied magnetic field have 
been identified. In the case that the Lorentz force is larger than the Coriolis force, the 
dominant flow structure is large scale, elongated in the direction of the applied 
magnetic field. This elongation serves to weaken the Lorentz force sufficiently that 
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a balance can be achieved. In the case of very weak rotation (52, < v/a2 and 52, < 
( ~ ~ v ) i B / p b ) ,  this balance is between Lorentz and viscous forces, and the necessary 
elongation is large, of order the Hartmann number, M ,  time the cylinder radius. In 
the case of weak rotation ( v / d  < 52, < @ B 2 / p  and 52, < pQ;/aB), the balance is 
magnetostrophic (between Lorentz and Coriolis) and the necessary elongation is less 
extreme, of order N ,  = (2p52,/aB2)1 times the cylinder radius. 

The situation is reversed for the case of strong rotation (aB2/p < 52, where 52, is the 
magnitude of the rotation vector perpendicular to the axis of the cylinder); now the 
large-scale structure is elongated in the direction of the rotation axis, weakening the 
Coriolis force so that the Lorentz force is able to balance it. This structure is similar 
to the classic Taylor column (e.g. see Moore & Saffman 1969), but is significantly 
shorter, as the Lorentz force is stronger than the viscous force in the limit of large 
Hartmann number; the elongation is of order N 2  = 2pSl,/cB2 times the cylinder 
radius. 

The drag expressions (4.10), (5.5) and (6.16) may be summarized by writing 

D = gB2a2qj Uj f i  (7.1) 

where U T = [ U  v W ]  (7.2) 

is the velocity vector, f1 = 2, 2, = 9, f3 = 2 and T is the tensor of drag coefficients. 
For very weak rotation (N ,  < 1/M and N ,  4 1/Mi) 

For weak rotation (1/M 4 N ,  4 1 and N: < N,) 

For strong rotation (1 4 N )  

r - - K ~ 2  - n ~ ~  0 1  

M 
= 14.;:;; 0 -3.3889- 

- nN2 0 

(7.3) 

(7.4) 

We expect that the diagonal components of the drag tensors will have negative 
coefficients. (More precisely, the tensors should have eigenvalues with negative real 
parts; they do so.) Of the nine diagonal coefficients in (7.3)-(7.5), seven are negative, 
but two are zero. The solutions given in (7.3)-(7.5) represent the leading-order terms 
in a double Taylor expansion in powers of Rossby number and magnetic Reynolds 
number. It happens that two of the drag coefficients are zero to this leading order, and 
it is anticipated that these coefficients will be found to be negative at the next order in 
the expansion. 

In the cases of very weak rotation and of weak rotation, the largest entry in the drag 
tensor is that resisting motion across magnetic field lines. The next largest entry is that 
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resisting motion of the cylinder parallel to its axis. To this order, there is no resistance 
to motion parallel to magnetic field lines. The lift forces induced by the Coriolis force 
are smaller than the non-zero resistive components. 

In the case of strong rotation, the situation is somewhat different. The resistive and 
lift components in the plane normal to the cylinder axis are all of comparable 
magnitude and large, while those involving the direction parallel to the cylinder axis are 
smaller. In all three cases considered, the resistance to motion of the cylinder parallel 
to its axis is of smaller order than resistance to transverse motion. Consequently, the 
motion in response to a specified forcing is in general not aligned with the direction of 
that forcing. 

Consider for example a cylinder rising freely under the action of a buoyancy force 
produced by a density deficit, Ap = pc -p,  where pe is the density of the cylinder. The 
buoyancy force per unit length acting on the cylinder is given by (3.5) of Ruan & Loper 
(1993). In equilibrium, the sum of the buoyancy force and the drag is zero. This 
condition may be solved for the velocity in terms of the orientation of gravity: 

This gives the speed and direction of rise of the cylinder in relation to the magnitude 
and orientation of the buoyancy force. Note that expression (7.6) does not contain the 
radius of the buoyant cylinder as an explicit parameter. Further the radius appears in 
the definition of M ,  but not of N .  It follows that the rise speed is relatively insensitive 
to the size of the cylinder. 
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